We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number ($k$) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with $k=2$ suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from $O(\sqrt{nT})$ to $O(n^2 \log T)$, where $n$ is the number of arms and $T$ is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, $k=3$ probes suffice to achieve parameter-independent constant regret, $O(n^2)$. Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.
translated by 谷歌翻译
在本文中,我们研究了中途公司,即在市场资本化少于100亿美元的公开交易公司。在30年内使用美国中载公司的大型数据集,我们期望通过中期预测默认的概率术语结构,了解哪些数据源(即基本,市场或定价数据)对违约风险贡献最多。然而,现有方法通常要求来自不同时间段的数据首先聚合并转变为横截面特征,我们将问题框架作为多标签时间级分类问题。我们适应变压器模型,从自然语言处理领域发出的最先进的深度学习模型,以信用风险建模设置。我们还使用注意热图解释这些模型的预测。为了进一步优化模型,我们为多标签分类和新型多通道架构提供了一种自定义损耗功能,具有差异训练,使模型能够有效地使用所有输入数据。我们的结果表明,拟议的深度学习架构的卓越性能,导致传统模型的AUC(接收器运行特征曲线下的区域)提高了13%。我们还展示了如何使用特定于这些模型的福利方法生成不同数据源和时间关系的重要性排名。
translated by 谷歌翻译
经常性神经网络(RNNS)是强大的动态模型,广泛用于机器学习(ML)和神经科学。之前的理论作品集中在具有添加剂相互作用的RNN上。然而,门控 - 即乘法 - 相互作用在真神经元中普遍存在,并且也是ML中最佳性能RNN的中心特征。在这里,我们表明Gating提供灵活地控制集体动态的两个突出特征:i)时间尺寸和ii)维度。栅极控制时间尺度导致新颖的稳定状态,网络用作灵活积分器。与以前的方法不同,Gating允许这种重要功能而没有参数微调或特殊对称。门还提供一种灵活的上下文相关机制来重置存储器跟踪,从而补充存储器功能。调制维度的栅极可以诱导新颖的不连续的混沌转变,其中输入将稳定的系统推向强的混沌活动,与通常稳定的输入效果相比。在这种转变之上,与添加剂RNN不同,关键点(拓扑复杂性)的增殖与混沌动力学的外观解耦(动态复杂性)。丰富的动态总结在相图中,从而为ML从业者提供了一个原理参数初始化选择的地图。
translated by 谷歌翻译